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Testing for the equivalence of results generated by different analyt-
ical methodology is a common practice in the pharmaceutical sci-
ences. Methodology changes are implemented for both scientific
and economic reasons during a scientific study. Thus, the need to
demonstrate the appropriateness of considering data generated by
distinct methods as part of a single information population arises.
This paper describes a rapid and simple approach to the statistical
design and interpretation of method comparison experiments. The
approach presented is based upon a statistical power calculation
technique, a knowledge of the variability associated with the meth-
ods to be compared and the criteria for equivalence (the limits within
which differences become immeasurable or, for practical purposes,
insignificant). Reference tables are included which show necessary
sample sizes for comparison experiments for common combinations
of these three variables.
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INTRODUCTION

It is a common occurrence in studies performed as part
of the development of a new drug product or the monitoring
of a marketed drug product that a change occurs in the an-
alytical methodology. These changes usually are manifested
as technique improvements (i.c., subtle but significant
changes in method operating parameters, supplies, or equip-
ment) or as technique substitution (i.e., a complete change of
methodology) and are implemented for scientific and/or eco-
nomic reasons. Since methodology adjustments of these
types do not always occur prior to the initiation of a study,
the methods used must be tested for similarity of accuracy
and precision. This must be done to allow data generated in
one portion of a study by the original method to be compared
statistically to data generated in another portion of the same
study using a distinct technique. Many factors must be con-
sidered when designing an experiment to test method equiv-
alence including method variability, human and equipment
resources, the criteria for equivalence (the limits within
which differences become immeasurable or, for practical
purposes, insignificant), sample availability, and time con-
straints.

Several approaches have been documented in the design
and/or interpretation of method comparison experiments.
One of the more commonly used techniques involves a linear
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regression of data of results by one method plotted against
the corresponding results from a second method. A subse-
quent equivalence determination is made based upon the
magnitude of the resulting correlation coefficient. While this
technique is usually simple and can be experimentally quick,
a number of authors have cited deficiencies and/or limita-
tions in its application (1-5). Other approaches include prin-
cipal-component analysis techniques (6,7), graphical tech-
niques (8), and other advanced statistical techniques (9,10).
Unfortunately, these approaches require relatively large
sample sizes, may be time and/or resource intensive, and/or
may require sophisticated statistical analysis.

An alternate approach to testing method equivalence is
presented in this paper. The experimental design is based
upon a statistical power calculation and has been con-
structed such that it will provide a relatively rapid and simple
statistically valid test of method equivalence based on rep-
licate assays of a single sample set. Once a sample size is
chosen which gives a minimum adequate power to detect a
difference in method mean accuracy, a sampling design is
used which will generally provide additional information
about the assays (e.g., relative precision, proportionality)
while requiring no additional testing. The technique as de-
scribed is flexible, allowing the analyst to perform the min-
imum amount of work necessary to determine method equiv-
alence within the constraints of predetermined tolerable dif-
ferences, method variability, and statistical probability.

EXPERIMENTAL

Sample Size Determination

Two types of errors are associated with statistical tests
to determine significant difference between two sample
means: Type I and Type II. Type I error results when a null
hypothesis (e.g., no method difference) is rejected even
though it is true. Type II error occurs when a null hypothesis
is accepted even though it is false. The probability that a
false null hypothesis is rejected is known as the power of the
test [i.e., Power = 1 — (the probability of a Type II error)]
(11).

The testing of equivalence of results generated by dis-
tinct analytical methodologies can also be described as the
testing for differences of a given magnitude among the data
under various experimental conditions (e.g., intrinsic
method variability, sample size, resource availability, etc.).
The power of a statistical test of significance, in this case, is
the probability of detecting this predefined difference. In a
given experimental design, additional power (versus a fixed
difference) is generally gained by increasing the sample size.

Equivalence of results in the context of analytical
method comparison is not equivalence in the pure mathe-
matical sense. Rather, it is defined as the limits within which
differences become immeasurable or, for practical purposes,
insignificant. Since it is often unnecessary to detect a differ-
ence between methods which is smaller than the variability
associated with any one of the methods, the range of differ-
ences is quickly reduced for most pharmaceutical analyses
from approximately 0.5 to 5%. If we choose to apply the
statistical significance test at the o = 0.05 level (95% prob-
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ability that a null hypothesis will be accepted if it is true),
with a power of 0.90 or 0.95, and if the intrinsic variability of
the two methods to be compared is known, then the number
of samples required per method can be calculated:

D = (Z, + Zp)l(o;? + 0,)/n]" (1)
Following algebraic rearrangement,

n = (o0;? + o HWDIZ, + ZYP}™! )]

D = minimum difference to detect with given power

Z, = critical value of the standard normal distribution
(1.96 for « = 0.05, two-sided)

Z, = power critical value of the standard normal
distribution (1.64 for B = 0.05, one-sided)

o, = standard deviation of method 1
o, = standard deviation of method 2
n = number of samples to be tested by each method

A slightly more exact estimate of » is obtained by an
iterative calculation of Eq. (2) where #(1 — «/2, 2n — 2) is
substituted for Z, and #1 — B, 2n — 2) is substituted for Z;.
Here #(x, df) is the positive critical value at x probability of
a ¢t statistic with df degrees of freedom. When the required
sample size is less than 20, the exact calculation generally
indicates the need for one additional sample per analytical
method. Otherwise, the exact method will give the same
solution as that obtained using Eq. (2). Tables I and II list the
exact sample sizes needed to determine a given minimum
difference between method means based upon a knowledge
of the standard deviation of the methods compared and pre-
determined values for power and statistical significance.

Analytical Sample Preparation

After an appropriate sample size has been chosen using
Table I or II, one of two cases usually is encountered. In the
first case (Case 1), the methods to be compared employ iden-
tical sample preparation techniques with differences in the
technique of determination of the analyte. Case 2, then, is
the situation where different sample preparation techniques
are employed with or without similar means of analyte de-
termination. In order to avoid any contribution to experi-
mental error due to differences among test samples [usually
some pharmaceutical dosage form (e.g., tablet, capsule, sus-
pension, etc.) with an intrinsic variability in the content of
the analyte(s)], it is desirable to use ‘‘identical’’ samples
when applying the methods to be compared. For Case 1, a
single dosage form (tablet, capsule, etc.) is prepared for as-
say according to the sample preparation instructions of the
methods. The resulting solution is then divided into two sets
of n fractions which are to be assayed and results calculated
according to each of the two methods. (Note that » is the
appropriate sample size as chosen from either Table I or
Table I1.) For case 2, n spiked placebo samples are prepared
according to the sample preparation instructions from each
of the two methods. The placebo formulations for all » sam-
ples must be spiked by the addition of a solution (to avoid
errors introduced due to lack of homogenicity when mixing
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Table I. Required Sample Sizes (Number of Replicates by Fach
Method) When All Assay Variability Is Within-Day

CV% Minimum difference
to detect (%)
New method  Standard method® 0.5 1 2 S

Required n when power of test is 90%

0.1 0.1 3 1 1 1
0.2 4 3 1 |
0.5 12 4 3 1
1 44 12 4 2
2 170 44 12 4
0.2 0.2 5 3 1 1
0.5 14 5 3 1
1 45 12 4 2
2 171 44 12 4
0.5 0.5 23 7 3 1
1 54 15 S 3
2 180 46 13 4
1 | 86 23 7 3
2 212 54 15 4
2 2 338 86 23 5
Required » when power of test is 95%
0.1 0.1 3 2 1 1
0.2 4 3 1 1
0.5 15 S 3 |
1 54 15 S 3
2 210 54 15 4
0.2 0.2 6 3 2 1
0.5 17 5 3 1
1 56 15 S 3
2 211 54 15 4
0.5 0.5 27 8 4 2
1 66 18 6 3
2 222 57 15 4
1 1 105 27 8 3
2 261 66 18 4
2 2 417 105 27 6

% Method which is to be replaced or augmented by new method.

two solids) containing the analyte to each of the placebos.
Each of the two sets of » samples is then treated according
to the sample preparation, assay, and calculation instruc-
tions of the respective methods.

It should be noted that the sample chosen for the
method comparison experiment should represent, physically
and chemically, the types of samples that would be encoun-
tered in the study in which the analytical methodology
change is proposed. For example, for a stability study it may
be appropriate to use a stability sample (i.e., aged and/or
degraded sample) as the sample for the method comparison
experiment. The procedures detailed herein for the prepara-
tion of samples for the method comparison experiment, and,
more importantly, the statistical treatment of the method
comparison data are independent of the type of sample used.

Method Comparison Data Treatment

After the choice of the appropriate number of samples
and the determination of the analyte(s) according to the two
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Table II. Required Samples Sizes (Number of Replicates by Each Method) When Assay Variability Has Between- and Within-Day
Components®

Required n when power of test is 90%

New method between-day CV% 0 0 0 0 0.2 0.2 0.2 0.2 1
Standard method between-day CV% 0.2 0.2 0.2 1 0.2 0.2 0.2 1 1
Within-day CV%
Minimum difference to detect (%)
New method Standard method 1 2 5 5 1 2 5 S 5
0.1 0.1 *b * * * * * * * *
0.2 * * * * * * * * *
0.5 * * * * * * * * *
1 * * * * * * * * *
2 * * * * * * * * *
0.2 0.2 * * * * * * * * *
0.5 8 3 1 * 26 3 1 * *
1 21 5 3 * 75 5 3 4 10
2 75 14 4 5 273 15 4 6 18
0.5 0.5 11 3 1 3 40 4 2 * *
1 25 5 3 4 89 6 3 4 *
2 79 14 4 6 287 16 4 6 *
1 1 38 8 3 4 138 9 3 4 *
2 93 16 4 6 336 18 4 6 20
2 2 147 25 5 8 534 28 5 8 28
Required n when power of test is 95%
New method between-day CV% 0 0 0 0 0.2 0.2 0.2
Standard method between-day CV% 0.2 0.2 0.2 1 0.2 0.2 1
Within-day CV%
Minimum difference to detect (%)
New method Standard method 1 2 5 5 2 S 5
0.1 0.1 * * * * * * *
0.2 * * * * * * *
0.5 * * * * * * *
1 * * * * * * *
2 * * * * * * *
0.2 0.2 * * * * * * *
0.5 11 3 1 * 4 1 *
1 31 6 3 * 7 3 4
2 112 17 4 7 20 4 8
0.5 0.5 16 4 2 4 4 2 *
1 36 6 3 5 8 3 5
2 118 18 4 7 21 4 8
1 1 57 9 3 5 11 3 5
2 138 20 4 8 24 5 9
2 2 219 32 6 11 37 6 12

4 Standard method = method which is to be replaced or augmented by new method.
b Although the sample size equation has a solution, it is not accurate unless both within-day CV% values are as large as the largest
between-day CV% and at least one within-day CV% is larger than the largest between-day CV%.

methods, the data obtained are tabulated in a one-to-one
correspondence fashion and the mean result (*relative stan-
dard deviation) is calculated. The two means are then com-
pared using the appropriate (paired or unpaired) ¢ test to
determine statistical equivalence. If the result of this statis-
tical exercise indicates equivalence, it is then acceptable to
interchange the two analytical methods freely and consider
the resulting data part of a single information population. If

the means are shown to be not statistically equivalent and
the difference is less than that decided a priori to be signif-
icant or relevant, the methods may still be freely inter-
changed with the data treated as if arising from a single in-
formation population. Obviously, if the statistical analyses
indicates that the means are not statistically equivalent and
the determined difference is greater than or equal to the
difference decided a priori to be significant or relevant, the
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methods may not be freely interchanged since the resulting
data sets will not belong to the same information population.

Statistical Simulation

Often the information gained from the method compar-
ison experiment can be greatly increased with a small addi-
tional expenditure of resources by using analytical samples
with a range of concentrations which spans the desired
working range of the assay. Such data can be plotted to show
whether assay variance is homogeneous over the range and
whether the relative bias between methods is fixed, relative,
or otherwise dependent upon concentration.

The standard sample size calculations which are used
here assume that all of the analytical samples will be repli-
cates of a single pharmaceutical formulation and the method
comparison is based on a two-tailed, parametric, unpaired ¢
test. If the analytical samples can be grouped, as, for exam-
ple, when split samples taken over the range of the standard
curve are assayed by two methods, then the appropriate
analysis is by a paired ¢ test. The relation between these
statistical tests can be expressed in terms of o,* and &, the
intrinsic variances of methods 1 and 2, respectively, mea-
sured at a single concentration or as dispersion about a re-
gression line (assay value vs true concentration). The paired
t test, then, is

n'™x, — x)l(o,> + 0,° — 2ra,0,)"? - )

which is compared to a table value with n — 1 degrees of
freedom, and the unpaired ¢ test is

"1/2(3‘1 - xz)/(0'12 + 0'22)‘/2 @

which is compared to a table value with 2n — 2 degrees of
freedom.

At different values of the sample size (n) and the aver-
age correlation (#) in the paired results, either the unpaired or
the paired ¢ test will have greater power to detect an assay
method difference (D). (Reference 5 discusses the correla-
tion coefficient as a function of the intrinsic variability in the
assay results and the range of sample concentrations as-
sayed.) The analyst generally benefits by choosing a design
which is appropriate for analysis by the paired ¢ test. For this
reason, it is useful to verify that the sample size chosen to
have a given power against a fixed method difference based
on the unpaired ¢ test will be sufficient to give similar Type
I and Type II error rates in a paired design.

A simulation study was conducted to compare unpaired
t-test and paired ¢-test statistics. Designs were selected from
combinations reported in Tables I and II. Each design was
simulated 400 times with zero true mean difference (D) be-
tween assay methods and then 400 times with D equal to the
minimum detectable difference. The random normal devi-
ates were calculated by the SAS function, RANNOR (13).
Using the same set of random deviations, data were gener-
ated to be identically distributed with a method 1 mean of
100 units or to be evenly grouped with method 1 means at 90,
96.7, 103.3, and 110 units. The homogeneous samples were
compared by an unpaired ¢ test and the grouped data were
compared by a paired ¢ test.
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RESULTS AND DISCUSSION

The sample size calculations summarized in Tables I
and II are based on two definitions of method precision. The
first, within-day variance is a measure of the expected pre-
cision when a single analyst on a single day makes determi-
nations of several analytical samples prepared from a single
quantity of test material. Assay repeatability is a measure of
within-day variance. The second type of variability is ob-
served between days. Assays made on different days may
differ because of unexceptional differences among analysts,
apparatus, or sample preparations. Assay reproducibility is
the measure of variance between days (12). Although sample
comparisons will be most precise if made within a single
assay, many practical comparisons, such as those among
stability samples, must be made over several different assays
conducted on several days. The observed differences in such
comparisons must be evaluated relative to a measure of as-
say precision which includes repeatability and reproducibil-
ity components.

A popular method of analytical test performance com-
parison (the Greenbrier approach) has been proposed by
Haynes ef al. (9). This method is designed to compare both
precision and relative accuracy and consistency of two test
methods over a practical range of sample concentrations.
The Greenbrier approach consists of a comprehensive test
plan calling for 36 analytical tests, 6 for each test method
carried out on 3 different days. The Greenbrier decision pro-
cedure leading to test method equivalence conclusions also
requires that the analytical testing be repeated when results
from the first set of three is within a defined range of uncer-
tainty.

Although a 3-day trial is a minimal design for direct
comparison of reproducibility between two assay methods,
the Greenbrier test plan is often impractical or impossible to
apply due to time, resource, and/or sample constraints. If the
individual validation of each method included a measure of
variability within and between days, then this information
may be used to assess the statistical validity of a single day
method comparison protocol. When the minimum difference
to be detected is relatively large compared to variation be-
tween days, then a single-day trial, with some increase in
sample size compared to the design for methods which have
no variation between days, will have adequate power and
sensitivity. (It should be noted that it is not possible to es-
timate test method reproducibility from such method equiv-
alence test data since the experiment as specified is per-
formed on a single day.)

Sample size estimates in Tables I and II are calculated
from Eq. (2), with a modification for exact small sample
probabilities. In the interest of generality, minimum differ-
ences and method standard deviations are expressed as a
percentage of the average assay result (percentage difference
and percentage coefficient of variation). Although techni-
cally, a method which has a constant coefficient of variation
(CV) does not have the same properties as a method with a
constant standard deviation (SD), this distinction is not crit-
ical in assays which are applied to a limited range of sample
concentrations. The sample sizes (n) listed are the required
number to be tested by each method. A percentage differ-
ence which is small relative to the assay CV can be detected
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Table III. Simulation Results Showing Empirical Type I and Type II Error Rates When Nominal Power of Test Is 0.90 and Significance
Level (Size) Is 0.05¢

t-test Type I t-test power

Between-day CV% Within-day CV% error rate (1 — Type II rate)
Minimum Sample

New Standard New Standard difference size

method method method method D n Unpaired Paired Unpaired Paired
0.0 0.0 0.1 0.5 0.5 12 0.045 0.045 0.875 0.868
0.0 0.0 0.1 2.0 1.0 44 0.048 0.045 0.882 0.882
0.0 0.0 0.2 2.0 2.0 12 0.060 0.058 0.888 0.882
0.0 0.0 0.5 2.0 5.0 4 0.065 0.048 0.888 0.862
0.0 0.0 0.5 2.0 5.0 4 0.068 0.058 0.905 0.882
0.0 0.2 0.1 0.2 1.0 4 0.212 0.205 1.000 1.000
0.0 0.2 0.1 0.2 1.0 4 0.112 0.098 1.000 1.000
0.2 0.2 0.1 0.5 1.0 24 0.610 0.620 1.000 1.000
0.2 0.2 0.2 1.0 1.0 75% 0.038 0.040 1.000 1.000
0.2 0.2 0.5 2.0 2.0 16 0.048 0.042 0.952 0.955
0.2 0.2 0.5 2.0 2.0 16 0.075 0.083 0.898 0.900
0.2 1.0 2.0 2.0 5.0 8 0.030 0.028 0.995 0.985

4 Each column represents a unique random seed used in the calls to the SAS random normal deviate generator. Standard method = method

to be replaced or augmented by new method.
% In groups of 15 at 90, 95, 100, 105, and 110 units.

with power equal to 0.9 or 0.95 (at the 0.05 significance
level), provided that the sample size is made sufficiently
large. Table I shows that, when both methods have the same
SD (or, equivalently, CV), a (percentage) difference which is
equal to the method CV can be detected with power = 0.9
when the sample size is at least 23 by each method. A per-
centage difference which is twice as large as the common
CV% can be detected with a sample of 7 by each method. A
slight increase in sample size (23 to 27 and 7 to 8) will in-
crease the power for these comparisons from 0.9 to 0.95.

Table II lists required sample sizes when a component
of variation between days (o) is considered as well as the
variation within days (o). Since »n replicates done on 1 day
give a standard error (or SD) for the sample mean which is
(0%, + o%,/n)~ "2, the standard error of the sample mean
cannot be reduced below o, even if infinitely many samples
are tested in 1 day. Thus, in Table II, a detectable difference
(D) must be at least large enough so that

D* > (Ub12 + o'bzz)(Zaz + Zﬁz) )
Simulation experiments discussed below indicate that some
variance configurations lead to inaccurate sample size cal-
culations. The required sample sizes for some a2, and power
combinations in Table II are then larger than the correspond-
ing sizes of Table 1. For example, when o2, and o2, for both
methods are 0.2 (CV%), then a difference of 1% can be de-
tected at the 0.05 significance level and power = 0.9 with as
few as 12 samples tested by each method. Generally, it ap-
pears that the detectable difference must be at least five
times as large as the between-day coefficient of variation in
order to have reasonable power to detect method differences
in a 1-day experiment.

If factors which contribute to variation between days
can be controlled, then sample size calculations might be
taken from Table I, since results by both methods will share
the random day effect. In general, however, it is expected
that Table II will represent something closer to the true sit-

uation. If the variability between days is larger than the vari-
ability within days, and if the method comparison experi-
ment cannot be designed to eliminate factors of between-day
variation, then the experiment must be run on several days.

Results of a small Monte Carlo study to compare Type
I and Type II error rates between the unpaired and the paired
t test are reported in Table III. Although the number of
replications is small, Table III shows good agreement be-
tween theoretical and empirical error rates for all of the de-
signs which have only within-day components of variation
and for most of the designs which have between- and within-
day variability. These results demonstrate that sample size
calculations of Table II are accurate only if both the within-
day components of variability (o) are at least as large as
either between-day component (o) and at least one o, is
larger than both oy,

The results in Table III also show good agreement be-
tween the power and significance levels of the unpaired and
those of the paired ¢ tests. This suggests that sample sizes
chosen for the simple method comparison between repli-
cates at a single concentration are valid for an experiment
designed to compare paired assay results over a range of
concentrations. The paired design will give additional informa-
tion about assay variability and evidence of proportional bias.

Note that the sensitive test for fixed bias is a paired ¢
test. If the results of method 2 (new method) are regressed
on method 1 (standard method) results and statistical tests
are performed to evaluate null hypotheses that the intercept
is zero and the slope is one, neither of these tests will be as
sensitive as the paired ¢ test. A test for intercept in a re-
stricted regression with slope fixed at one is equivalent to the
paired ¢t test. Similarly, a statistical test that the slope is
equal to one in a regression through the origin is a sensitive
test for relative bias.

CONCLUSION

An approach to experimental design of method equiva-
lence experiments has been presented. The approach em-
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phasizes practical considerations (relevance of difference
below a certain value) as well as statistically valid data anal-
yses. The method is often less resource consuming than
other approaches commonly employed as the comparison
experiment may be run on a single day if the between-day
variability is small relative to the within-day component and
the minimum difference to detect. If sample preparation
techniques allow, the method comparison might be done rel-
ative to within-day precision. Such a plan may not give such
general evidence for method equivalence as an experiment
run on several days. It is always efficient to perform a
method comparison experiment as paired comparisons at
concentrations spanning the working range of the assay.
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